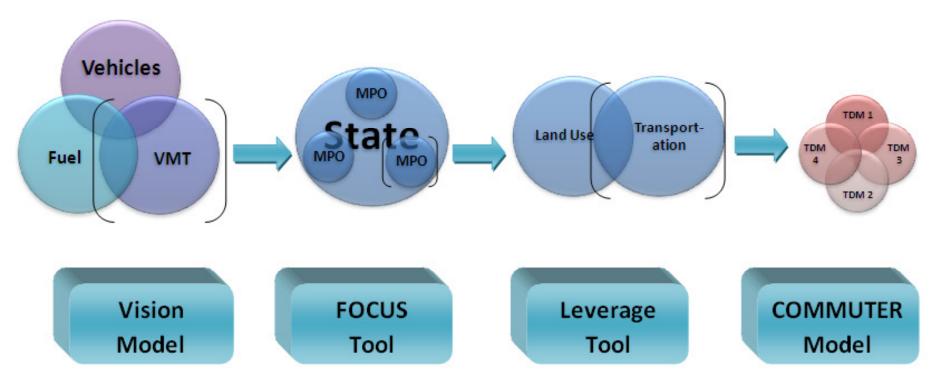
An Integrated Tools-Based Approach to Transportation and Land Use GHG Mitigation Policy Analysis

Economics

Public Policy


Planning

Judith Mueller, Lewison Lem, Ph.D., Scott Williamson, and Rami Chami Jack Faucett Associates For the Air & Waste Management Association (AWMA) November 2011

Purpose of the Integrated Tool-Based Analysis Approach

- A comprehensive family of integrated analysis tools allows for 'stand alone' and 'integrated' analysis of many transportation and land use policies
- The integrated tool-set provides a consistent and validated method for analyzing different GHG reduction strategies for the transportation and land use sector
- The integrated tool-set can estimate the aggregate effects of multiple policies and also measure overlap and synergistic effects of policies

Comprehensive Integrated Tool-Based Analysis Approach

Example of Using EPA COMMUTER Model for Travel Demand Management Strategies

 The EPA COMMUTER Model analyzes Transportation Demand Management (TDM) strategies and provides travel and emission impacts in its results

Draft Example: Travel Demand Management

		Separate Analysis of Strategy Bundles							
	2020			2030			2011-2030		
NYS I&F (Millions VMT)	139,696	24,396	12,059	160,688	28,062	13,871	2,814,919	491,581	242,992
	Passenger	Lt Trks	HDV	Passenger	Lt Trks	HDV	Passenger	Lt Trks	HDV
Bundle 2: TLU	6A-6D (TDM/1	rsm)							
Sum of standalone Impacts		N/A	0	8,222	N/A	0	135,159	N/A	0
Integrated Impact		N/A	0	7,727	N/A	0	127,024	N/A	0
Integration Effect (<i>Overlap</i>)		N/A	0.0%	-6.0%	N/A	0.0%	-6.0%	N/A	0.0%
Percent Change from Baseline I&F		N/A	0.0%	4.8%	N/A	0.0%	4.5%	N/A	0.0%

Example of Using TARGGET Tool for Transit and Land Use Strategies

- Transit reduces (displaces) Scope 3 GHG emissions in three ways:
- Mode shift(transit riders take less private vehicle trips)
- 2. Congestion relief
- 3. Land use changes (i.e. land use multiplier)
- APTA provides guidance on how to estimate each of these GHG reduction mechanisms at the <u>transit agency level</u>

Draft Example: Transit and Land Use

	Separate Analysis of Strategy Bundles								
	2020			2030			2011-2030		
NYS I&F (Millions VMT)	139,696	24,396	12,059	160,688	28,062	13,871	2,814,919	491,581	242,992
	Passenger	Lt Trks	HDV	Passenger	Lt Trks	HDV	Passenger	Lt Trks	HDV
Bundle 3b: TL		7 (Transit add					·		
Sum of standalone Impacts (Transit affects LDV									
VMT only) Integrated Impact			225						4,931 4,931
Integration Effect (Synergy)			0.0%	·					0.0%
Percent Change from Baseline I&F	Ì	N/A	-1.9%	-22.7%	N/A	-3.7%	-15.4%	N/A	-2.0%

VMT Efficiency Strategy Expansion Analysis Tools

"Top Down" versus "Bottoms Up" Analysis

- Other Tools and Methods of Analysis rely upon "Top Down" Analysis
- "Top Down" Analysis tools are limited by shortcomings of Aggregate Baseline Scenario Data

A Suite of Tools based upon "Bottoms Up" Analysis

- "Bottoms Up" Tools do not rely upon Aggregate Baseline Scenario Data
- Instead "Bottoms Up" Tools rely upon Scientific Knowledge Base for Unit Effectiveness Factors
- Unit Effectiveness Factors are "Scaled Up" through Strategy Expansion Scenario

Bottoms Up Analysis Provides Improved Ramp Up Scenario Analysis

- Top Down Analysis is helpful for regulatory programs (eg. Vehicle standards, fuel standards)
- VMT Efficiency is generally not implemented through regulation.

Bottoms Up Analysis Provides Improved Ramp Up Scenario Analysis

- Instead VMT Efficiency is achieved through expanded funding and program implementation
- Bottoms Up Analysis Allows for multiple, iterative scenarios of ramp up and program implementation

A Growing Suite of VMT Efficiency Analysis Tools for Strategy Expansion

- Scientifically Based Analytical Capabilities
- Multiple and Iterative Scenario Analysis
- Not Dependent upon Quality of Aggregate Inventory and Forecast

Example: Bike-Sharing Strategy Expansion Analysis Tool

Lewison Lem, Ph.D. and Shanshan

Zhang

Jack Faucett Associates, Inc.

November 2011

Benefit-Cost Analysis

background

scenario

lessons

next steps

EXAMPLE

Bike-sharing Modest CO₂ benefits are a contributing factor to large overall benefits.

Costs	\$231,000,000		
Capital	\$16,000,000		
Operating	\$75,000,000		
In creased Accidents	\$145,000,000		
Benefits	\$625,500,000		
User Cost Savings	\$197,000,000		
Travel Time Savings	\$378,000,000		
Reduced Accidents (from reduced VMT)	\$1,300,000		
Public Health	\$2,000,000		
In creased Access	\$38,000,000		
Congestion Reduction	\$3,500,000		
Environmental Benefits	\$5,700,000		
CO ₂	66,000 tons		

All numbers over 20 year horizon from 2010-2030

Introduction

- This Tool uses a combination of national data and local data
 - National data are assumptions for the analysis
 - Local data are inputs provided by the user
- This Tool was developed based on the bike share analysis example provided by Metropolitan Washington Council of Governments (MWCOG)

Key Components

- Costs
 - Capital Cost
 - Operating Cost
 - Bike Replacement Cost
- Revenues
 - Advertising Revenue
 - User Fee Revenue

Key Components

- Major Benefit
 - Energy Savings
- Co-benefits
 - User Cost Savings
 - Travel Time Savings
 - Congestion Reduction
 - Environmental Benefits
 - Health Care Savings
 - · Reduced Accidents

Costs

- Capital Cost
 - Annual capital cost = \$500 X number of new bikes purchased each year
 - Capital cost in first year = \$3500 X number of bikes
- Operating Cost
 - Annual operating cost = \$1400 X number of bikes
 - Bike Replacement Cost:
 - Assuming a lifetime of 6 years for all bikes

Revenues

- Advertising Revenue
 - Based on advertising revenue per bike
- User Fee Revenue (per bike)
 - Revenue from members = Yearly membership cost X 10 members per bike
 - Revenue from day pass riders = Day pass cost X 84 riders per bike per year

Example: Change Mode Shift Data

• Suppose more riders used to drive and fewer riders used to take public transportation

	Default Data	User Designated Data
From transit to bike	50.0%	45.0%
From walking to bike	26.0%	16.0%
From car/motorcycle to bike	7.8%	12.8%
From personal bike to sharing bike	5.0%	5.0%
From taxi to bike	2.5%	2.5%
From not traveling to bike	8.3%	8.3%
Total	100%	100%

Example: Change Mode Shift Data

- With new mode share assumptions, the bike share program shows a higher benefit-to-cost ratio.
- This makes sense since the bike share program now has a greater impact on fuel savings

	B/C Ratio with Default Data	B/C Ratio with User Designated Data
3% discount rate	1.99	2.12
7% discount rate	0.85	0.97

Thank you for your interest:

Lewison Lem, Ph.D.

Jack Faucett Associates (JFA)

Lem.JFA@gmail.com

(415) 525-6163

http://www.jfaucett.com/

