

It's All in the Numbers: A Look Into Emission Factors Used in GHG Permitting and Reporting

AWMA GHG Strategies Conference Presented by: Jill Hecht

Mark J. Bareta

Overview

> Introduction

> Engine and turbine emissions

- Required reporting
- Approaches to emissions estimates
- Results of internal examination
- Conclusions
- > Glycol dehydrator emissions
 - Required reporting
 - Emission factors
 - Other options
 - Conclusions
- > Conclusion

Introduction

> Regulatory Implications

> GHG Reporting Program

> Information for decisions about emissions reduction

> GHG Tailoring Rule

> Information for permitting

> Disclaimers (Natural Gas Processing Viewpoint)

- > Subpart C
- > Subpart W
- > GHG Tailoring Rule

Ingenuity takes energy.*

Engine and Turbine Required Reporting

> Subpart C reporting

> Fuel use and emission factors derived from carbon content of the fuel

> Single emission factors pros/cons

- Easy to use a single emission factor
- Easy to track metered fuel use / hours of operation
- Not as accurate doesn't account for source differences, sizes, types, fuel slip, fuel quality

> Tailoring rule

- > Accuracy of emissions estimates Permitting vs. GHGRR
 - Fuel Based Emission Factors
 - Equipment Specific Emission Factors
 - Stack Testing
 - Manufacturer Provided Information

Tailoring Rule Emissions Estimates

- > Fuel Based Factors (Subpart C)
 - Conservative approach to CO₂ emissions
 - Not equipment specific ignores factors such as fuel slip
 - Leads to questionable CH₄ results
- > Equipment Specific Fuel Based Factors (AP-42)
 - Conservative approach to CO₂ emissions
 - Equipment type specific (rich burn, lean burn) accounts for fuel slip, combustion efficiency
 - General estimate, not model specific (Waukesha vs. Caterpillar)

> Stack Testing

- Representative of a point in time, often of a 'best operational scenario'
- After the fact, expensive, difficult to do

> Manufacturer Emission Factors

- Very specific to scenario (altitude, temperature, etc.)
- May not be complete at this time (incomplete data)
- Often represent "guaranteed emissions" and may be overly conservative

Emissions Comparisons

> CO₂ Emissions

Туре	Model	Subpart C Emissions	AP-42 Emissions	Manufacturer Emissions
		(MTPY)	(MTPY)	(MTPY)
Rich Burn Engine	Waukesha L7042GSI	5877.98	4981.77	5812.17
Ultra Lean Burn	Caterpillar G3516B	5199.51	4406.75	5733.98
Engine	0.5gNOx			
Turbine	Mars 100 15000S	57971.96	49733.04	58139.47

> CH₄ Emissions (CO₂E Emissions)

Туре	Model	Subpart C	AP-42	Manufacturer
		Emissions	Emissions	Emissions
		(MTPY)	(MTPY)	(MTPY)
Rich Burn Engine	Waukesha L7042GSI	0.11 (2.31)	10.42 (218.82)	22.06 (463.26)
Ultra Lean Burn	Caterpillar G3516B	0.10 (2.10)	50.08 (1051.68)	48.99 (1028.79)
Engine	0.5gNOx			
Turbine	Mars 100 15000S	1.09 (22.89)	3.84 (80.64)	13.96 (293.16)

Ingenuity takes energy.*

Buyer Beware

- 40 CFR 98 \rightarrow Regulation Provides Factors

- Requirement of the regulation
- Use Subpart C factors for Subpart C reporting
- GHG Tailoring Rule Permitting \rightarrow Manufacturer Emissions Data
 - Manufacturer emissions provide arguably best available data
 - · May place facility in a better position for later regulatory actions or required stack testing
 - *** Evaluate all regulatory requirements for triggering permitting and reporting. You may trip a permitting or reporting threshold using manufacturer data, but you may not using Subpart C methodologies *** Use the correct program emission factors for each program.
- > You may be reporting/permitting different values for each source or facility
 - State Reporting / Federal Reporting / Other Reporting / EIQs

Ingenuity takes energy,°

Glycol Dehydrator Emissions Reporting

- > 40 CFR 98 Subpart W
- > Emissions calculations for field dehydrators are responsibility of the owning/operating entity
 - Williams has over 3,500 dehys at field locations; approx. 2000 will require a run
 - 2000 dehy runs x 15 minutes/run = 12.5 work weeks
- > Dehydrators under 0.4 mmscf/day use emission factor
 - Count based emission factor
- > Dehydrators *above* 0.4 mmscf/day require GRI GlyCalc runs
 - Dehydrators above 3.0 mmscf/day already require GRI GlyCalc Run under 40 CFR 63 Subpart HH
 - API, GPA, others have requested any dehy under 3.0 mmscf/day use an API throughput based factor
 - EPA refuses to use the factor due to concerns over accuracy and *we agree*

Throughput vs. Emissions

liams

Ingenuity takes energy.*

Other Options

- > The Rule allows for engineering estimates and representative samples
 - Rule states that, "A minimum of the following parameters determined by engineering estimate based on best available data must be used..." [40 CFR 98.233(e)(1)]
- > Representative Runs allow for the most significant factors to be specifically accounted for while allowing representative data for other factors that may not have a significant impact on emissions
 - Group dehydrators based on the following factors
 - sub basin gas composition
 - wet gas pressure by sub basin and flow rate
 - glycol type
 - pump size/type
 - maximum circulation rate.

From 2000 runs to 45+ runs, plus dehy runs being performed for 40 CFR 63 Subpart HH compliance

Representative Run Comparison

Figure 2: Representative Run Comparison

Conclusions

> Engine and turbine emissions

- Recognize that different emission factors may impact reporting and permitting
- Recognize that the tailoring rule may require manufacturer emissions data
- Match the purposes of the emission estimates to the purposes of your programs

> Glycol dehydrators

- Emission factors are not the answer for reporting
- Representative runs for groups of dehydrators may be a viable option to reduce the burden of reporting and still achieve the accuracy required from the regulation

Ingenuity takes energy,°

Acknowledgments

- > AWMA
- > Michelle McCracken
- > Ky Nichols
- > Dennis Elliott
- > Walter Konkel
- > Ken Chow
- > Midstream Environmental team

Contact Information

- > Jill Hecht
 - Jill.Hecht1@Williams.com
- > Mark J. Bareta
 - Mark.Bareta@Williams.com