

Biomass Solutions for Urban Communities

International Union of Air Pollution Prevention and Environmental Protection Associations' World Clean Air Congress

September 14, 2010

Jonathan Wilkinson, Senior VP Business Development, Nexterra Systems Corp

Nexterra Overview

Company

- Global leader in biomass gasification technology and systems
- Supplies turnkey biomass gasification systems for public institutions and industrial customers
- Enables customers to generate, clean renewable energy from low cost sources of waste biomass
- Ultra low emissions, high efficiency and solution package ideally suited to urban environments
- World class partners, well capitalized with an experienced team

Strategic Relationships

Johnson Controls – institutions

Andritz – WWT/municipal partner

Tolko Industries – Kamloops

- · 38 MMBtu/hr plywood plant heating system
- Displaces natural gas
- CO2e reduction: 12,000 tpy
- Commissioned 2006

University of South Carolina

- 72 MMBtu/hr campus heat & power
- CO2e reduction 20,000 tpy
- Commissioned 2008

Dockside Green, Victoria

- 7 MMBtu/hr district heating system
- Heating & Hot Water for residential complex
- CO2e reduction 3,400 tpy
- Commissioned May 2009

US DOE Oak Ridge National Labs

- 60 MMBtu/hr steam system
- JCI/Nexterra selected by DOE
- CO2e reduction: 23,000 tpy
- Startup: 2011

Kruger Products (Scott Paper)

- 40 MMBtu/hr steam system
- · Gas displacement in a boiler
- Commissioned: Q4/2009
- CO₂e Reduction: 22,000 tpy

UNBC, Prince George

- 15 MMBtu/hr campus heat
- CO2e reduction: 3,500tpy
- Startup: Q4 2010

Integrated Resource Management

- Cities are increasingly examining the use of carbon neutral fuel resources that can be sourced locally
- Gasification can be a significant component of an integrated approach to managing and extracting value from municipal waste streams

- Woody biomass resources are typically are available from municipal tree trimmings and from construction and demolition waste
- Biosolids are available from local wastewater treatment plants

Biomass: Carbon Neutral Solution

- Renewable and carbon neutral
- Substitution in place of fossil fuels will reduce GHG emissions
- Locally sourced fuel such as locally produced wood residue, pine beetle kill, municipal tree trimmings, recycled construction and demolition waste etc.
- Dispatchable (base-load capable) source of energy
- Lower cost than natural gas or oil

SysteTechardkages for On-Site Heat and Power

Air Emissions: Comparisons

Notes:

Tonnes per year based upon typical 24 MMBtu/hr system, 45% mc fuel

- * NOx depends on nitrogen in biomass fuel
- ** PM with baghouse or ESP

Dockside Green Case Study

Dockside Green

- 1.3 million sq/ft of residential, office, and retail space
- Located in the heart of the City of Victoria
- Triple bottom-line development
- Developed by Vancity and Windmill Developments
- First greenhouse gas neutral community in Canada

Dockside Green: Requirements

- State-of-the-art
- Gasification, not combustion
- Proven, reliable technology
- New standard of low emissions
- Community acceptance
- Economically viable
- Ability to handle variable fuel
- Fully automated & operator friendly
- Potential to convert to power (future)

Dockside Green: Design Considerations

- Emissions
- Dust and odor
- Noise attenuation
- Fuel truck traffic
- Building aesthetics and design
- Community acceptance

Dockside Green: Partner Support

Supporters:

BChydro

DOCKSIDE GREEN

Dockside Green – Victoria BC

- District Heating & Hot Water 8 MMBtu/hr
- Fueled with Urban Wood Waste
- LEED platinum development
- Started up May 2009

UBC Case Study

The University of British Columbia

- BC's largest University with over 50,000 students
- Main campus located in Vancouver (Point Grey)
- Reputation for leadership in advanced research and learning
- Commitment to reduce GHGs to 100 per cent below 2007 levels by 2050
- Use the campus as a living laboratory

Centre for Interactive Research for Sustainability (CIRS)

Nexterra Biomass CHP System

- Economic at small-scale 2 10 Mwe
- Game changing, breakthrough technology for biomass to power
- Combines Nexterra's gasification technologies with IC gas engines
- Significantly more efficient than conventional steam power generation
- · Firm, base load green energy vs intermittent power such as wind or solar
- No steam engineers and natural gas comparable emissions for PM

Comparison – Biomass Combustion vs. Nexterra CHP

30 MW ABB/Zurn biomass plant, CA

2 MW Nexterra biomass CHP plant

	Old Paradigm	New
Model	Centralized	Distributed
Efficiency (power only)	Low (20 - 22%)	High (30%)
Efficiency (CHP)	System dependent	High (60%+)
Scale (economic)	Large (>30 MW)	Small (2–10 M
Fuel Footprint	High (30 MW = 250,000 bdtpy)	Low (2 MW = 1
Fuel Truck Traffic	High (30 MW = 30 trucks/day)	Low (2 MW = 2
Steam Plant Operators	Yes	No
PM Emissions	High volume	Ultra Low – na
Permitting/Public Risk	Higher	Lower
Construction Time	Long : 24 – 36 months	Short: 12 mont
Grid Connection Costs	Higher	Minimal – insid
Urban Friendly	No – scale, traffic, emissions	Yes – scale, tra

New Paradigm

Distributed
High (30%)
High (60%+)
Small (2–10 MW)
Low (2 MW = 13,000 bdtpy)
Low (2 MW = 2 trucks/day)
No
Ultra Low – natural gas for particulate
Lower
Short: 12 months
Minimal – inside the fence
Yes – scale, traffic, emissions

CHP System at UBC

UBC – 2 MW Biomass CHP Project

• Fuel Req'd: 12,500 BDMT/year (2/3 trucks/day)

180' X 90'

- Gross Power: 1.95 MW
- Net Thermal: 10 MMBTU/hr (80,000 MMBTU/yr)
- CO2 Red: 4,000 tpy (thermal only)
- Footprint:

Impact on UBC Community

Fossil Fuel Reduction

- Eliminates of up to 9,000 tonnes of fossil-based CO₂ emissions/year equal to taking 2,250 cars off the road
- Displaces natural gas consumption with locally produced syngas from carbon-neutral biomass

Emissions

- Minimal impact on UBC air shed (no odours or smoke), no water discharge, best-in-class emissions profile
- Full sound attenuation with noise below current neighborhood levels

Fuel Diverted From Landfills

• 25% of fuel donated from city of Vancouver diverted from landfill

Truck Traffic

• Two-three truck loads of wood fuel daily – less than 1% of current truck traffic

Aesthetics

Architecturally-designed building using latest in wood-based sustainable construction practices

Project Partners

UBC project partners include:

- BC Bioenergy Network
- BC Ministry of Energy, Mines GE Energy
- BC Ministry of Forests
- Ethanol BC •

- FP Innovations
- Natural Resources Canada •
- Nexterra Systems Corp. •
- Sustainable Development Technology • Canada

Conclusions

- Fuels switching from fossil fuel to biomass is an excellent opportunity for GHG reductions for communities and institutions
- Woody biomass from landfills and tree trimmings + biosolids from wastewater treatment plants can be utilized for energy generation
- Fuel switching can significantly reduce ongoing operating costs
- All biomass conversion systems are not the same emissions profile is particularly important in gaining public acceptance and support
- Public engagement for these types of projects is critical must be done early in the process

Thank-you