SOIL VAPOR INTRUSION FIELD RESEARCH PROGRAM - EVALUATION OF SOIL VAPOR ATTENUATION ABOVE RESIDUAL MGP IMPACTS AT SITE IN WISCONSIN

Ian Hers, Golder Associates
Jim Lingle, EPRI
Frank Dombrowski, We Energies
Ed Murphy, Golder Associates
Todd Rees, Golder Associates
Parisa Jourabchi, Golder Associates,
University of British Columbia
Ulrich Mayer, University of British Columbia
Outline

- Project Objectives
- Site Characterization Methods
- Overview of Site Characterization Results
- Capping Study
- Modeling Methods
- Modeling Results
- Conclusions
Project Objectives

• Characterize the soil vapor intrusion (SVI) potential at remediated MGP sites with residual impacts

• Assess the significance of *vadose zone natural attenuation* (VZNA) for biodegradation of MGP chemicals

• Use site studies to evaluate alternative characterization methods to assess SVI for sites with buildings and sites with future development potential

• Assess approaches/methods for mitigation of SVI
Site Characterization Methods

• Passive Gore Sorber survey
• Soil and groundwater quality testing
• High resolution soil gas profiling, and repeated sampling to obtain temporal data
 • Field analysis of O₂, CO₂, CH₄ by Landtec GEM-2000; Hydrocarbons by PID
 • Laboratory analysis TO-15, TO-17, Modified 8260
• Soil physical property testing
• Monitoring soil moisture using capacitance probe
• Real-time polymerase chain reaction (PCR) molecular testing
Soil Moisture Study
Study Area Characterization Results

• Depth to groundwater is approximately 10 ft.
• Localized residual NAPL near to water table
• Benzene and naphthalene groundwater concentrations equal to 2300 μg/L and 940 μg/L, respectively
• Vadose zone soils are dense clayey, silty sand fill (area excavated to ~12 ft.) with high water-holding capacity, localized deep gravel in one area; in-filled channel near study area with organic matter
• Anaerobic biodegradation in deep vadose zone, aerobic biodegradation (of MGP-vapors & CH₄) & rapid attenuation of hydrocarbon vapors between primarily 6 and 8 ft. depth
• PCR analysis indicated aromatic hydrocarbon-utilizing bacteria are locally present but not uniformly distributed
What is Vapor Composition and Relative Attenuation?

- Extended PIANO analyte list
- Aromatics ~67% (benzene highest concentration), aliphatics ~ 33%
- BTEX vapors attenuate to greater degree than iso-parafins (e.g., iso-pentane)
- Naphthalene concentration low even in deep vapor! (equal to or less than 200 ug/m³)
Capping Study

• Bioattenuation is a significant process under current conditions
• How might vapors change under future development scenario?
• Broader context are recent efforts to develop screening approaches for degradable hydrocarbons (e.g., exclusion factors based thickness of clean soil, attenuation reduction factors (e.g., 10X, 100X)
• How would this site fit this framework?
Capping Study

• Would attenuation change with cap simulating building slab?!
• Cap constructed July 2009
• July 2009 – present
 – Field analysis (O2, CO2, CH4, PID)
 – Lab analyses (TO-15, TO-17)
• Soil moisture monitoring using capacitance probe and data logger
Vapor Transport Modeling

• Conventional vapor transport models generally simulate:
 • Molecular diffusive transport,
 • Aerobic first-order biodegradation, and
 • Soil gas advection through an external pressure gradient (e.g., depressurized building, barometric pumping)

“Multi-component Modeling - Stefan-Maxwell Equations – Knudson Diffusion - Dusty Gas Model?”

Dusty Island Universe
Modeling Study – Set up

Constant O₂ Conc.
\(C_{O_2} = 20.9\% \)

Constant O₂ Conc.
\(C_{O_2} = 20.9\% \)

Cap

No Flow Boundary

Soil

No Flow Boundary

0.05 m

15.2

20 m

20 m

3.6 m

Constant Hydrocarbon Concentration \(C_{HC} \)

Two components:

Hydrocarbon = 0.5 mg/L (~0.15%) (Most model runs assume all vapors are benzene)

Methane = 6%
Modeling Study – Transient Results Just Below Center of Cap

- Model predicts ~ 3 years for steady state conditions for benzene to be achieved.
Modeling Study – Oxygen

Post-cap data, O_2 depletion over ~5 months

Relatively good match modeled and measured data
Modeling Study – Oxygen Sensitivity Post-capping

Oxygen - G3

Oxygen Concentration (%)

Depth (ft)

10X higher diffusion rate through cap

much higher O_2 sensitive!

Again much higher O_2 if only non-methane HCs modeled
Modeling Study - Methane

Methane - G3

CH₄ Soil Gas Concentration (%)

Methane concentrations slightly underpredicted

Most post-cap data

Pre-cap Model Post-cap Model

Pre-cap Data
Measured carbon dioxide profile was unusual – More often profiles indicate higher CO₂ at depth.

One way we have been able to match measured data is to assume high calcite content minerals.
Modeling Study – Comparison Aromatics and Aliphatics

For these model runs divided non-CH₄ hydrocarbons into aromatics and aliphatics.

Aromatics (benzene) vs. Aliphatics (methylcyclohexane)

Different behavior observed; measured data consistent with model.
Modeling Study – Aromatics

Aromatics (benzene)

Benzene - G3

Soil Gas Concentration ($\mu g/m^3$)

Post-cap Data

Pre-cap Data

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Modeling Study – Results of Advection

For one model run, turned off advection – resulted in a 5% decrease in the methane flux.
Conclusions – Measured Data for Capping Condition

• A zone of oxygen depletion formed below cap and methane concentrations increased after several months
• Benzene concentrations increased slightly but there was still significant degradation observed (but was steady state reached?)
Conclusions – Some Things Modeling Showed

• Generally good comparison obtained between model predicted and measured concentrations (except CO₂)
• May take several years for steady state conditions to be reached for benzene
• Oxygen below cap is highly dependent on diffusion rate through the cap (a 10X change resulted in completely different profile!)
Conclusions – Some Things Modeling Showed (cont.)

• Critical to include methane oxidation demand (otherwise will over predict biodegradation)
• When methane concentrations are high (e.g., 6% in our case) a model that includes advection is more accurate (but difference is fairly small (5%))
• Less attenuation for aliphatic compared to aromatic hydrocarbons (consistent with data)
Conclusions – Big Picture and Future Directions

• Effect of cap not un-expected given elevated methane concentrations, however …

• Aerobic biodegradation is highly sensitive to oxygen diffusion through top boundary – how would this change if concrete slab was simulated? Or if there was a mechanism for oxygen recharge to below slab (e.g., wind, barometric pumping)

• Knowledge gained from modeling studies and empirical data provide basis for framework for identifying when biodegradation can be included in site screening and models
TO-17 Sorbent Media Comparative Study
New TO17 Sorbent Technology

Multi-bed ‘hydrophobic’ sorbent tube designed and tested by Perkin Elmer

Adsorbents

Sample Flow: Adsorb compounds

Sample Analysis: Desorb chemicals
TO17 Sorbent Comparison

Weak

- Little retention of water, ideal for high humidity soil vapor
- Good performance and sensitivity for naphthalene and PAHs through Pyrene
- Elevated RL for benzene due to background from Tenax
- Breakthrough observed for Benzene under high concentration conditions

Weaker

- Largely hydrophobic, designed and validated for soil vapor applications
- Good performance and sensitivity for benzene, naphthalene through Pyrene
- Low Benzene background translating into a lower reporting limit
- Retains benzene even when sampling high concentration soil vapor

- Tenax TA TO-17 Tubes
- SVI™ TO-17 Tubes
TO-17 Naphthalene + PAHs

- Naphthalene + PAH Detections using TO-17
 - April 2010 round: One site had detectable naphthalene levels by TO-17, no sites had detectable levels by TO-15

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tenax TA µg/m³</th>
<th>VI µg/m³</th>
<th>TO-15 µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>12</td>
<td>7.4</td>
<td><24</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>12</td>
<td><5.0</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Air Toxics Ltd. has optimized PAHs on VI tube for next round, lowering RL by a factor of 10.