Soil Vapor Migration Through Subsurface Utilities

September 30, 2010
Mark Distler, O’Brien & Gere
Paul Mazierski, DuPont
Presentation Outline

- Initial Investigation
- Investigation Area
- Subsequent Investigation
 - Approach
 - Results
Initial Investigation

- State agency initial investigation
 - Residential area adjacent to industrial area
Initial Investigation (cont’d)

- Limited detections of PCE and TCE in shallow groundwater
 - No detections in 7 of 9 wells
 - BTEX (low levels) found in 8 of 9 wells
Initial Investigation (cont’d)

- Sporadic detections of PCE and TCE in soil vapor
 - PCE in 26 of 43 sample points (3 >100 µg/m³)
 - TCE in 16 of 43 sample points (4 >50 µg/m³)
Sample Annotation:

J: Compound detected below reporting limit, value is approximate.
A: Compound detected in duplicate sample, highest concentration shown.

Soil vapor samples were analyzed for VOCs by EPA Method TO-15. Units for soil vapor samples are micrograms per cubic meter (μg/m³).
Subsequent Investigation Objective

- Further investigation required by State agency
 - In area of 3 highest PCE and TCE soil vapor results
 - What is source of PCE / TCE in soil vapor?

![Investigation Area Image]
Investigation Area

- **Geology**
 - 4-10 foot clay / glacial till overburden on top of bedrock

- **Subsurface utilities**
 - Under most streets, incised in bedrock, 8-13 bgs
Investigation Area (cont’d)

- Hydrogeology
 - 2-6 feet bgs
 - Shall flow vertically downward and toward incised sewers
Investigation Goals

1. Develop soil vapor conceptual model
 - Groundwater plume
 - Lack of GW detections
 - Sporadic soil vapor detections
 - Vadose zone migration
 - Shallow and low porosity vadose zone
 - Significant distance between industrial area and soil vapor detections
 - Subsurface utility migration
 - Sewers within residential area and between industrial area

2. Assess potential of SVI
Field Investigation

- **Sampling objectives**
 - Evaluate SV migration from sewers
 - Evaluate the potential for migration to buildings

- **Sampling approach**
 - Soil vapor
 - 6 series of 3 sample points
 - Each series at increasing distances from respective sewer
 - 1 – near sewer
 - 2 – represent front house setback
 - 3 – represent back of house setback
 - Sewer vapor
 - Lateral utility
Conceptual Elevation Schematic
Soil Vapor Sampling
Sample Results
Sampling Results

<table>
<thead>
<tr>
<th>Series</th>
<th>Point</th>
<th>PCE</th>
<th>TCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>µg/m³</td>
<td>µg/m³</td>
</tr>
<tr>
<td>1</td>
<td>S</td>
<td>160-880</td>
<td>70 -1400</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>810</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>81</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>520</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>110</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>81</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>750</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14</td>
<td>ND</td>
</tr>
</tbody>
</table>
Conclusions

- TCE / PCE present or migrating through utility corridor
- Soil vapor diffusion in overburden is limited
- Primary industrial discharge along Buffalo Ave./27th Street may be contributing to soil vapor in the utility corridor
QUESTIONS?
THANK YOU