OZONE—THE GOOD (OZONE), THE BAD (OZONE), AND THE UGLY (SMOG) ### **OBJECTIVES** Students will do the following: - 1. Explain that ozone can be found in the troposphere and in the stratosphere - 2. Explain how stratospheric ozone is protective - 3. Describe ways in which tropospheric ozone can be harmful - 4. Understand that chlorofluorocarbons (CFCs) can destroy stratospheric ozone - 5. Describe efforts to reduce CFC use - 6. Write their own definition of "smog" - List the effects of smog **TOPICS:** The differences between good and bad ozone ### TIME: 1 class period ### SUBJECTS: Science, language arts, art ### MATERIALS: 5 styrofoam balls per student 5 toothpicks per student Poster board Crayons, markers, or paints Large, narrow-mouthed jar Matches Playdough® (homemade or commercial) or modeling clay in different colors OPTIONAL: See extension suggestions ### BACKGROUND INFORMATION The issue of ozone in the earth's atmosphere can be confusing. On the one hand, we know that high above the earth's surface is a layer of ozone that surrounds the planet and helps block out some of the sun's harmful radiation. We hear reports of "holes" developing in this ozone shield and of the harm that the increased ultraviolet radiation can cause on earth. On the other hand, we know that higher-than-normal concentrations of ozone in the ambient air (this ozone is referred to by scientists as "ground-level" ozone) can be harmful to people, animals, plants, and various materials. Indeed, ozone is one of the criteria pollutants, those harmful substances that are most widespread in the ambient air. The ozone gas in both places is the same—it's the chemical O₃—but in the upper atmosphere it greatly benefits all life, whereas near the earth's surface it can cause problems. The stratospheric ozone layer High in the stratosphere a layer of ozone gas forms an important and effective protective barrier against the harmful ultraviolet radiation from the sun. There has been increasing global concern that chemical pollutants are destroying this ozone layer. The main culprits seem to be in a class of chemical compounds called chlorofluorocarbons, or CFCs. First introduced in the late 1920s, these gases have been used as coolants for air conditioners and refrigerators, propellants for aerosol sprays, and agents for producing plastic foam. Because CFC molecules are extremely stable, they tend not to react with other substances in the troposphere, so they can rise intact into the stratosphere. Here ultraviolet radiation breaks them up into their more-reactive components, including chlorine, the culprit in the destruction of ozone. Increased ultraviolet radiation at the earth's surface can lead to a greater incidence of skin cancer, eye problems, and immune deficiencies in humans and to decreased crop yields and reduced populations of microscopic sea plants and animals that are vital to the food chain. Efforts to protect the ozone layer now involve many different nations and industries. At an international conference in London in 1990, 93 countries agreed to eliminate CFCs entirely by the year 2000. Researchers are busy finding less-harmful, and in many cases more-economical, substitutes for the CFCs. Ozone pollution ("ground-level" ozone) High concentrations of ozone in the ambient air can present many problems. Because ozone molecules are highly reactive, they combine with practically every material they contact, whether it be lung tissue, crops or other vegetation, rubber, plastic, paints, etc. What we usually refer to as photochemical "smog" is mostly ground-level ozone. Smog (whose name derives from the words *smoke* and *fog*) can be of two types: "London-type" and photochemical. London-type smog is formed when moisture in the air condenses on particulate matter given off by the burning of coal. It contains a lot of sulfur dioxide, which causes breathing problems. Photochemical smog is the type of smog that is mostly ozone. The recipe for the formation of ozone in the ambient air includes natural atmospheric gases, volatile organic compounds (VOCs), nitrogen oxides, and sunlight. Because sunlight is a key factor, ozone pollution is worse during the day and in the summertime. Vehicle exhausts provide most of the VOCs and nitrogen oxides that help form ozone, so times of increased vehicle use (such as morning and afternoon rush hours) also increase the possibility of ozone problems. (The problem is usually greatest at midday or mid-afternoon because of the effect of the sun.) Stationary sources (such as power plants) also emit the VOCs and nitrogen oxides that contribute to photochemical smog. Ozone can cause eye, nose, and throat irritation; can damage the lungs; and can exacerbate preexisting medical conditions such as asthma and emphysema. Weather patterns are a factor in ozone pollution, either helping to disperse the problem, or transport it to a different location, or stall it and foster the buildup of ozone to extremely hazardous levels. These high levels, which usually occur when there is a temperature inversion, are called air pollution "episodes." In 1948, a heavy buildup of London-type smog in Donora, Pennsylvania, caused 20 deaths and 6,000 illnesses, and in 1952, nearly 4,000 people died from heavy smog (sulfur dioxide and particulate matter) in London, England. What can be done? Both ozone problems—stratospheric depletion and tropospheric buildup—are created in large part by air pollution. The only practical approach to stopping the destruction of the ozone layer and to minimizing ground-level ozone pollution is reducing the human-generated pollutants that contribute to these problems. Finding and using alternatives to CFCs is an essential part of protecting stratospheric ozone. As individuals we can immediately repair any leaks in refrigerators, have our car air conditioners checked periodically, use alternatives to home air conditioning, use alternatives to foam insulation and containers (or foam insulation that is formed without CFCs), purchase halon-free fire extinguishers, and encourage our elected officials to pass laws requiring CFC recycling. Decreasing our use of fossil-fuel-burning vehicles is critical to reducing ozone levels in the air we breathe. We can use public transportation for long trips, walk or use bicycles for short trips, carpool to work and other activities, and combine several errands into one outing. These steps are especially important on the days that meteorologists predict the possibility of high reading of ground-level ozone. ### **PROCEDURE** ### I. SETTING THE STAGE A. This activity relates to Objectives 1, 2, and 3. Students will learn the difference between tropospheric and stratospheric ozone. ### Third-, fourth-, and fifth-graders You will need the following materials: - ☐ Playdough® (homemade or commercial) or modeling clay in different colors - B. Use the masters provided to make overhead transparencies or handouts of "Ozone—Double Trouble" and "How Harmful Ozone Is Formed." (Reinforce the idea that our atmosphere is "thin" compared to the "thicker" earth. An analogy might be an apple—the skin is like the atmosphere.) - C. Use them to lead a class discussion about "good" and "bad" ozone—where each is, what makes the ozone good or bad, effects of tropospheric ozone, health consequences of the "hole" in the stratospheric ozone layer, etc. You might want to compare it to fire, which is sometimes beneficial and sometimes harmful—depending on where it is and what it is doing. - D. Divide the class into groups. Using playdough or modeling clay of different colors, have the students build a model of the earth and the layers of its atmosphere. ### II. ACTIVITY. CFCs—THEY HURT GOOD OZONE A. This activity relates to Objectives 4 and 5. It will help students understand the role that CFCs play in the harming of the "good" ozone layer. ### Third-, fourth-, and fifth-graders You will need the following materials: - □ Poster board□ Crayons, markers, or paints - B. Share with students the background information about CFCs. - C. Have students make public information posters informing people about the harmful effects of CFCs on stratospheric ozone and/or about the harmful effects of increases in ultraviolet (UV) radiation. - D. Display the posters around the school. ### Fifth-graders E. **OPTIONAL:** Order "On The Trail Of The Missing Ozone." (EPA 909-K-93-001, April 1993) Let students read it during class and then have a class discussion about it. F. Using the diagram below as a guide, have students make models of ozone (O₃) and oxygen (O₂) molecules. You will need the following materials, for each student or group of students: - ☐ 5 styrofoam balls - ☐ 5 toothpicks ### III. ACTIVITY. SMOG—IS IT HAZY TO YOU? A. This activity relates to Objectives 6 and 7. Students will learn what smog is and what its effects can be. ### Third-, fourth-, and fifth-graders - B. Ask students the following questions: - 1. What is photochemical smog? (A form of air pollution that is composed mostly of ozone. It gives the air a hazy, dirty appearance and can harm the respiratory system.) - 2. Where does the name "smog" come from? (It is a combination of the words "smoke" and "fog.") - 3. What causes photochemical smog? (Smog is formed when nitrogen dioxide and VOCs react in the presence of sunlight.) - 4. When and where is photochemical smog most likely to form? (On sunny summer days in areas where there are lots of automobile exhaust emissions or lots of emissions from factories.) - 5. What kind of harmful health effects does ozone/smog cause? (Eye, nose, and throat irritation and lung damage.) ### IV. ACTIVITY. On a SMOGGY DAY, YOU CAN'T SEE FOREVER A. This activity relates to Objectives 6. It is a simplified demonstration of how London-type (*not* photochemical) smog is formed. ### Third-, fourth-, and fifth-graders | You will need the following materials: | | | |--|---|--------------------------| | | | Small narrow-mouthed jar | | | П | Matches | - B. Perform this demonstration to show how London-type smog is formed: - 1. Blow hard into a large narrow-mouthed jar and then quickly remove your lips. - 2. Light a match and blow it out. - 3. While it is still smoking, dip the match into the jar so that smoke enters. - 4. Blow into the jar again and quickly remove your lips. - 5. CAUTION: EXPLAIN TO STUDENTS THE DANGERS OF FIRE AND THAT THEY SHOULD NEVER PLAY WITH MATCHES. - C. Ask student the following questions: - 1. What happened? (Smoke built up in the jar.) - 2. Why did that happen? (When you stopped blowing the first time, the sudden lessening of pressure produced a cooling effect. This caused a small amount of water vapor to condense (turn back into droplets). The water vapor combined with the tiny particles of dust from the smoke to form London-type smog. - D. Explain that this is similar to the formation of London-type smog in cities where there is smoke from coal-burning and that smoke mixes with moisture in the air. ### V. FOLLOW-UP. HOPKINS HARE ADVENTURES #2 - A. This activity relates to Objective 6 and 7. This story reinforces some of the information in the preceding activities. - B. Make copies of "The Continuing Adventures of Hopkins Hare in His Quest for Clean Air: Episode #2, Ozone and Smog...Hopkins Learns About a Recipe for Disaster!" - C. Depending on the reading level of the students, either let the students read and color the story or read it to them. - D. Because this story might be unsettling for younger children, discuss it with them after they have read it or heard it. ### VI. EXTENSION - A. Have students maintain a chart of the Air Pollution Index from the daily newspaper weather page. - B. Read aloud *Country Mouse/City Mouse*. Have the students write an original version in which the pollution content of the city air convinces Country Mouse to return home. - C. Write "photochemical smog" (or "ground-level ozone") on the chalkboard. Give the students 1 minute and 30 seconds to compile a list of as many words as possible out of the letters. - D. Let students create a sun visor on tagboard. Use an elastic strip to help it stay on. On top of the visor draw a picture that promotes ozone-related pollution prevention. - E. Using coat hangers, string, and index cards, have students create mobiles. On the mobiles have the students create and decorate good, bad, and ugly facts about ozone. - F. Have the students write persuasive paragraphs on CFCs and how companies should not produce products that destroy the ozone. ### RESOURCES Air Pollution. Pittsburgh, PA: Air & Waste Management Association, 1991. Ardley, Neil. 101 Great Science Experiments. London: Dorling Kindersley, 1993. Barr, George. Science Research Experiments for Young People. New York: Dover, 1989. Environmental Resource Guide—Air Quality, Grades 6-8. Pittsburgh, PA: Air & Waste Management Association, 1991. Gega, Peter C. Science in Elementary Education. New York: McMillan, 1986. Hann, Judith. How Science Works. London: Dorling Kindersley, 1991. Trefil, James. 1001 Things Everyone Should Know about Science. New York: Doubleday, 1992. United States Environmental Protection Agency Office of Air Quality Planning and Standards. *Environmental Science Summer Institute Workbook*. Research Triangle Park, NC. 1995. World Book Encyclopedia, 1994 edition, s.v. "Ozone." # How Harmful Ozone Is Formed # Episode #2: Ozone and Smog...Hopkins Learns about a Recipe for Disaster! As Hopkins Hare sat in traffic in his "Hoppy Jalopy" waiting for the light to change, fumes and exhaust from the long line of trucks and cars ahead surrounded him. They were making him cough. "This is no way to live," thought Hopkins. "I'm getting hopping mad. Where's that Bridget? She was going to help me learn more about how to clean up this dirty air." Just then, Bridget the bird came crashing to a landing on top of Hopkins' hood. She grabbed the windshield as the light changed and Hopkins hit the gas. "Awk, awk, awk!" Bridget squawked, holding on for dear life. "Pull this pollution-producing heap into that gas station over there! I thought you were interested in helping to do something about cleaning up the air in ToxCity, not making it worse. Just smell those fumes coming from under your hood and look at the black smoke coming out of the tail pipe." "You mean, I'm part of the problem?" Hopkins asked, surprised. He wiggled his pink nose and scratched one of his long ears as he pulled the car up to the gas pump. "Gee, I hadn't thought about that." "Poorly maintained cars like this are one of this reasons our air gets so dirty," said Bridget. "As soon as we finish filling up, you should schedule an appointment for a tune-up. Everyone can help clean the air by keeping their cars in tip-top shape with regular tune-ups. But, of course, cars are certainly not the only reason the air is dirty. Factories, dry cleaners, and even gas stations like this one pollute the air. Here, let me help you pump the gas." "Cough. Cough. Awk!" Bridget sputtered as she covered her face with one wing. "What's wrong?" asked Hopkins. "I turned the Hoppy Jalopy off." "It's these fumes drifting up from the gas nozzle. They pollute the air, too," came the muffled reply. "Fumes from the gas pump, too? Let me see!" said Hopkins. "You can't see them," said Bridget. "Oh, yes, I can," said Hopkins as he whipped out his handy magic magnifying glass. It gave them a closer look at the gases that go into making up dirty air. "Do you know what ozone is?" asked Bridget. "Well," said Hopkins, "I've heard it's one of the biggest problems we have in ToxCity. It's when it gets hazy outside, isn't it? Our eyes get itchy and red, and it's hard to breathe. But, I don't understand how it gets here." "Awk, It's like a recipe for that carrot-cake you're always munching. A lot of things mix together and become something else. Certain things must happen before the carrots and flour and water and spices cook together and become a cake. "When you go to a gas station like this one and smell vapors drifting from the nozzle of the gas pump, these vapors are called hydrocarbons. They can also come from paint, hair spray, dry cleaning plants, car tail pipes, and chimneys. "These fumes go into the air and mix together with another ingredient from car exhausts and factory smokestacks called nitrogen oxide. When the sun shines on this mixture it makes ozone. Most of the ingredients for ozone come form cars, buses, and trucks." "Wow! That's a mouth full," said Hopkins. "I'll bet ozone would taste yucky, not yummy like my carrot-cake." "Awk! For sure!" Bridget said, using the windshield scraper to clean her fogged-up sunglasses. "Then there's smog. You know how sometimes it gets real hazy and hard to see in the city. That's called smog. The word smog was made by putting together the words "smoke" and "fog." The fog comes from ozone and the smoke comes from tiny bits and pieces of dust, dirt, and fumes. This combination also makes it very hard for us to breathe, especially kids and older people." "Gee," Hopkins said. "It makes me feel sad to think that we help make air dirty, but good to know we can do something about it." "Awk! It's not all your jalopy's fault," Bridget said, opening the door for Hopkins. "Remember, factories do it too, and power plants and house heaters. Even nature pollutes the air. Plants and animals decay, there are dust storms in desert areas, and smoke is created from forest and grass fires. But the largest natural polluter of all is volcanoes. Stick with me, kid. Awk! There's plenty more to know." ### **Coming Soon!** Will Bridget take Hopkins to see a real volcano? Will Hopkins really be able to make a difference by taking better care of the Hoppy Jalopy and doing other things Bridget suggests? Stay tuned for the next episode... ### READER FAMILY TIME—Reader Two ### Dear Parent(s): Although we can't always see it, the air around us is polluted. High up in the atmosphere is a layer of ozone that occurs naturally and protects life on Earth by screening out harmful ultraviolet rays from the sun. But there is another type of ozone that occurs at ground level. It is a noxious pollutant that irritates the eyes, damages the lungs, and aggravates respiratory problems. It is our most widespread urban air pollution problem. At least half of all ozone-causing pollutants come from cars, buses, and trucks. **Discussion Time**: Discuss air pollution with your child(ren). See who can spot or name the most sources of air pollution. Examples include: chemical plants, steel mills, oil refineries, power plants, hazardous waste incinerators, and any facility using smoke stacks. Other sources include automobiles, dry cleaners, gas stations (gasoline fumes), wood stoves, fireplaces, volcanoes, and forest fires. # Van Pool Color the van, then cut out along the dotted line. Fold in half and glue or tape together the two sides. Punch a hole in the top and tie one end of a 12" string to it. Attach this to the rest of your mobile. Some vehicles, like vans, are great for carrying a lot of people instead of taking several cars. A Powerline Creative Production, Newark, DE Project Clean Air is sponsored, in part, by the following organizations: Federal Highway Administration Transportation Management Association of New Castle County (TMA of NCC) Delaware State Chamber of Commerce Chrysler Corporation Copyright 1992, DelDOT, Delaware Transit Corporation ALL RIGHTS RESERVED